Circle Lab

<u>Purpose</u>: To determine the relationship between the area of a circle and its radius, and the circumference of a circle and its radius.

Apparatus : Graph paper, pencils, compass or circular lids, string, metric ruler

Procedure:

- 1. Mark a series of circles onto graph paper and paper.
- 2. Measure the radius of these circles with a metric ruler.
- 3. Determine the area of the circles on the graph paper.
 - a. Count up the number of complete square cm
 - b. Count up the number of smaller squares and divide by 25 to convert to square cm.
- 4. Convert cm^2 to m^2 .
- 5. Take string and determine the circumference of the circles on plain paper.
 - a. Wrap the string around the perimeter of the circle
 - b. Measure length of string
- 6. Plot graph of area vs. radius and circumference vs. radius
- 7. Analyze graphs to determine the relationship between the variables.

Data:

	Data Set		
	Radius	Area	F
	(m)	(m^2)	
1	0.00	0.000000000	
2	0.01	0.000314159	
3	0.02	0.001256637	
4	0.03	0.002827433	
5	0.04	0.005026548	
6	0.05	0.007853982	
7	0.06	0.011309734	
8	0.07	0.015393804	
9	0.08	0.020106193	
	-		

	Data Set		
	Radius	Circumference	
	(m)	(m)	
1	0.00	0.000000000	<u>A</u>
2	0.01	0.062800000	
3	0.02	0.125600000	
4	0.03	0.188400000	
5	0.04	0.251200000	
6	0.05	0.314000000	
7	0.06	0.376800000	
8	0.07	0.439600000	
9	0.08	0.502400000	Ŧ
10	4	Þ	<u>г</u>

Evaluation of Data:

	Radius^2	
	(m^2)	
1	0.000	<u></u>
2	0.000	
3	0.000	
4	0.001	
5	0.002	
6	0.003	
7	0.004	
8	0.005	
9	0.006	
10		
11		
		I

 $A = 3.14 (m^2/m^2) R^{2}$ 1.28 x 10⁻⁹ % = | 2.56 x 10⁻¹³/.020*100 |

C = 6.28 (m/m)R2.56 x 10 ⁻¹⁴ % = | -1.28 x 10 ⁻¹⁶/.5 *100 |

Conclusion:

<u> Part 1:</u>

In conclusion of this laboratory activity it can be said that the relationship of the area and radius for a circle can be expressed as the following: *The area of a circle is proportional to the square of its radius*. From the mathematical model, a general equation can be determined. The general equation is: $A = \pi r^2$ where A is the area of a circle, π is the slope of the graph, and r is the radius of the circle. The slope found was the change in the area divided by the change in the radius squared. The slope was a constant value of approximately 3.14. The slope represents a constant called *pi*. Therefore, the slope can be written as $\pi = 3.14$. The y-intercept is defined as the area when the radius squared is equal to zero. This means that the area of a circle is zero if it has no radius.

<u>Part 2:</u>

It can also be concluded that the relationship of the circumference and radius of a circle can be expressed as the following: *The circumference of a circle is proportional to its radius*. The second general equation that we came up with is: $C = 2\pi r$, where C is the circumference of a circle, 2π is two times *pi*, and r is the radius of the circle. The slope is defined as the change in the circumference divided by the change in the radius. The slope was a constant with a value of 6.28 or 2 times 3.14 or the value of π . The π in this case is called *pi*. Therefore, the slope can be written as: $6.28 = 2 \pi$. The y intercept is defined are the circumference of the circle when the radius is zero. The y-intercept means that the circumference of a circle will be zero if a circle has no radius.

There are no new terms for this lab.

A source of error in the lab can be attributed to inaccuracies in measurement of the radius or circumference lengths. In addition, error can be found in approximating the area of a circle by determining portions of solid squares.