Unit 4 problem set 4
 Covalent Bonding Packet

Objective: You will determine how atoms are joined in a covalently bonded molecule, and how to name those compounds.

Materials: molecular model kit

Method and Observations:

I want you to do 5 things with each molecule below. You need to find the dot structure, 3-D sketch, type of geometry, polarity and name of each molecule. Organize this in a neat format.

The spheres are arranged according to groups and atoms:

Group/Atom	
	Color
V	Black
VI	Blue
For Br	Red
Cl	Orange
I	Green
H	Purple
	White

H_{2}

| Dot Structure | | 3-D Sketch |
| :--- | :--- | :--- | :--- |
| | | |
| Geometry | Polarity | |

\mathbf{F}_{2}

| Dot Structure | 3-D Sketch | |
| :--- | :--- | :--- | :--- |
| | | |
| Geometry | Polarity | |

| $\mathrm{Cl}_{\mathbf{2}}$ | | |
| :--- | :--- | :--- | :--- |
| Dot Structure | 3-D Sketch | |
| | | |
| | | |
| Geometry | Polarity | Name |

PH_{3}

Dot Structure	3-D Sketch	
Geometry	Polarity	

CH_{4}

| Dot Structure | 3-D Sketch | |
| :--- | :--- | :--- | :--- |
| | | |
| Geometry | Polarity | |

CHI_{3}

Dot Structure	3-D Sketch	
Geometry	Polarity	

$\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Dot Structure	3-D Sketch		

| $\mathbf{H}_{2} \mathrm{O}$ |
| :--- | :--- | :--- |
| Dot Structure 3-D Sketch

 Geometry Polarity |

$\mathbf{N H}_{3}$

| Dot Structure | 3-D Sketch | |
| :--- | :--- | :--- | :--- |
| | | |
| Geometry | Polarity | Name |

NI_{3}

Dot Structure	3-D Sketch	
(Polarity		
Geometry		Name

$\mathbf{O}_{\mathbf{2}}$

| Dot Structure | 3-D Sketch | |
| :--- | :--- | :--- | :--- |
| | | |
| | | |
| Geometry | Polarity | Name |

CO_{2}			
Dot Structure		3-D Sketch	
Geometry	Polarity		

| $\mathrm{SiO}_{\mathbf{2}}$ |
| :--- | :--- | :--- |
| Dot Structure 3-D Sketch

 Geometry Polarity |

C O

Dot Structure	3-D Sketch	
Geometry	Polarity	

\mathbf{N}_{2}

| Dot Structure | 3-D Sketch | |
| :--- | :--- | :--- | :--- |
| | | |
| Geometry | Polarity | |

$\mathrm{C}_{2} \mathrm{H}_{4}$

Dot Structure	3-D Sketch	
Geometry	Polarity	

$\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{2}}$		
Dot Structure	3-D Sketch	
Geometry	Polarity	Name

Calculations and Results:

-Put the compounds in a table of polar vs. nonpolar molecules.

Polar	

- Without using models, explain how you could experimentally, in a lab, determine if these molecules were polar or non-polar. Incorporate a drawing here.

Polar	

Conclusion:

-List the "real world" uses of two of the 20 compounds used in this lab.

